Interactive high fidelity visualization of complex materials on the GPU

نویسندگان

  • Nuno Silva
  • Luís Paulo Santos
چکیده

High fidelity interactive rendering is of major importance for footwear designers, since it allows experimenting with virtual prototypes of new products, rather than producing expensive physical mock-ups. This requires capturing the appearance of complex materials by resorting to image based approaches, such as the Bidirectional Texture Function (BTF), to allow subsequent interactive visualization, while still maintaining the capability to edit the materials’ appearance. However, interactive global illumination rendering of compressed editable BTFs with ordinary computing resources remains to be demonstrated. In this paper we demonstrate interactive global illumination by using a GPU ray tracing engine and the Sparse Parametric Mixture Model representation of BTFs, which is particularly well suited for BTF editing. We propose a rendering pipeline and data layout which allow for interactive frame rates and provide a scalability analysis with respect to the scene’s complexity. We also include soft shadows from area light sources and approximate global illumination with ambient occlusion by resorting to progressive refinement, which quickly converges to an high quality image while maintaining interactive frame rates by limiting the number of rays shot per frame. Acceptable performance is also demonstrated under dynamic settings, including camera movements, changing lighting conditions and dynamic geometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time Visualization of a Sparse Parametric Mixture Model for BTF Rendering

Bidirectional Texture Functions (BTF) allow high quality visualization of real world materials exhibiting complex appearance and details that can not be faithfully represented using simpler analytical or parametric representations. Accurate representations of such materials require huge amounts of data, hindering real time rendering. BTFs compress the raw original data, constituting a compromis...

متن کامل

GPU-based Appearance Preserving Trimmed NURBS Rendering

Trimmed NURBS are the standard surface representation used in CAD/CAM systems and accurate visualization of trimmed NURBS models at interactive frame rates is of great interest for industry. To support modification and/or animation of such surfaces, a GPU-based trimming and tessellation algorithm has been developed recently. First, the NURBS is approximated with a bi-cubic hierarchy of Bézier p...

متن کامل

Making Grass and Fur Move

Trimmed NURBS are the standard surface representation used in CAD/CAM systems and accurate visualization of trimmed NURBS models at interactive frame rates is of great interest for industry. To support modification and/or animation of such surfaces, a GPU-based trimming and tessellation algorithm has been developed recently. First, the NURBS is approximated with a bi-cubic hierarchy of Bézier p...

متن کامل

GPU-Based 3D Texture Advection for the Visualization of Unsteady Flow Fields

We present an interactive visualization approach for the dense representation of unsteady 3D flow fields. The first part of this approach is a GPU-based 3D texture advection scheme that allows a slice of the 3D visual representation to be updated in a single rendering pass. In the second step, the result of the advection process is displayed by texture-based volume rendering. Since both parts a...

متن کامل

Realistic and Interactive Visualization of High-Density Plant Ecosystems

Modeling and visualization of natural and realistic outdoor ecosystems like forests or meadows remains a highly challenging task in computer graphics. Convincing and non-artificial scenes require many thousands to millions of plants, each modeled with a high degree of geometric, shading, and lighting detail. At the same time many applications demand interactive rendering at high fidelity. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Graphics

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2013